IEEE SIGNAL PROCESSING LETTERS, VOL. 19, NO. 11, NOVEMBER 2012

765

Boosting Object Retrieval With Group Queries

Yanzhi Chen, Xi Li, Anthony Dick, and Anton van den Hengel

Abstract—Given a query image of an object, object retrieval
aims to return all images from a corpus that depict the same
object. Inevitably, the accuracy of the result depends strongly on
the quality of the query image. Several measures have been taken
to improve retrieval result quality, including the addition of a
bounding box to the query, the mining of highly ranked results
for more views of the object, and spatial consistency re-ranking.
In this letter, we propose a discriminative criterion for improving
result quality. This criterion lends itself to the addition of extra
query data, and we show that multiple query images can be
combined to produce enhanced results. Experiments compare the
performance of the method to state-of-the-art in object retrieval,
and show how performance is lifted by the inclusion of further
query images.

Index Terms—Discriminative ranking function, group query,
object retrieval.

I. INTRODUCTION

VER the past decade, the problem of image based object

retrieval has been actively researched, with significant
improvements to both accuracy and scale. Many works have
used the bag-of-words (BoW) model, where images are repre-
sented as term frequency inverse document frequency (tf-idf)
weight vectors and ranked by their dot product similarity to a
query image. To improve retrieval accuracy, methods built on
the BoW model make use of several auxiliary steps either to im-
prove the image representation [ 1]-[3] or post-process the query
result list [4]-[6]. Despite encouraging results, these methods
have difficulty in capturing the diverse distribution of possible
appearances of the query object, leading to a strong dependence
on query image quality. As shown in Fig. 1, the performance
when retrieving the same building object varies dramatically:
the retrieval case with front viewpoint (I) in Fig. 1 has signifi-
cantly higher accuracy than the other cases (the right side view-
point (II) and left side viewpoint (III) in Fig. 1). In the case of
(IT) and (IIT), query expansion [5] usually fails because there are
not enough true positives for spatial verification, as investigated
in [7].

Several standard object retrieval datasets contain bounding
boxes specifying the image region occupied by the object of in-
terest. These boxes are exploited by most of the methods listed
above, to improve retrieval result quality. Less common is the
use of multiple query images to specify a single object, even

Manuscript received July 03, 2012; revised August 19, 2012; accepted Au-
gust 22, 2012. Date of publication September 10, 2012; date of current version
September 21, 2012. The associate editor coordinating the review of this man-
uscript and approving it for publication was Prof. H. Vicky Zhao.

The authors are with the School of Computer Science, The University of
Adelaide, Adelaide SA 5005, Australia (e-mail: yanzhi.chen@adelaide.edu.au;
xi.li03@adelaide.edu.au;  anthony.dick@adelaide.edu.au;  anton.vanden-
hengel@adelaide.edu.au).

This paper has supplementary downloadable material available at http://iee-
explore.ieee.org, provided by the author.

Digital Object Identifier 10.1109/LSP.2012.2216875

- Query object
‘il 3=
I a

N ﬁ w ﬁ ﬁ #p=0566 GRERKIEE
. L

o1 | R kﬁ )

| o ’ = Ranklist

E ﬁ giai.'nw 0158 1

R mwwzgz €——Ranklist3
} —

Query 1 Query 2 Query 3

Positive data
<Negative data

Refined rank list

(): front
viewpoint

Aiznb dnoib

() right sidle|
viewpoint

(): left side
viewpoint

individual query results

Fig. 1. Tllustration of our object retrieval method, using 3 query images of the
same object from different viewpoints. Individual query results are mined for
positive and negative examples, which are then used to train a boosted classi-
fier. The classification function is then used to rank image results. Typically, it
obtains higher accuracy than is possible from any individual query.

though this information is more likely to be available in real
cases for object retrieval. For example, image sharing websites
such as Flickr or Facebook group images into communities con-
taining the same or similar subjects. Typically, each community
contains images of the same object from varying viewpoints.
One of the few previous works to exploit this information is
[8], where users input multiple query images as positive sam-
ples of an object class, along with negative images that do not
contain the object. Using these positive and negative samples, a
discriminative classification model is learned to rank all images
in the dataset. Alternatively, target object in the dataset can be
matched by a discriminative relevance evaluation, where posi-
tive and negative queries are used to obtain the mutual informa-
tion score [9]. A discriminative ranking criterion is well suited to
the use of multiple query images as it models the set of positive
samples non-parametrically, and can therefore accommodate a
diverse set of image views. It also naturally benefits from the
addition of extra positive and negative samples.

Contribution: We introduce a group query-based object re-
trieval method (illustrated in Fig. 1), which uses a small group
of images of a query object to reflect its appearance variation
(e.g., different viewpoints). We propose a novel discriminative
ranking criterion for multiple queries that builds on previous
methods [8], [10]. In contrast to [8], our method can work even
with a single query image, but exploits the extra information
in multiple queries when available. These query instances are
used to automatically collect a set of query-dependent positive
and negative data samples as used by discriminative query
expansion (DQE) [10]. In contrast to average query expansion
(AQE) [5], which uses positive samples to improve query
recall, DQE re-ranks the dataset images by a data-dependent
weight vector learnt from both positive and negative samples.
Unlike the linear ranking models used in [8], [10], [11], our
proposed method constructs a nonlinear ranking model using
an ensemble of linear support vector machines (SVM) that
are adaptively weighted by boosting. The constructed ranking
model features both nonlinear inter-class separation and effi-
cient ranking prediction.
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II. DISCRIMINATIVE OBJECT RETRIEVAL

A. Overview

We define a group query as the set Q@ = {q,;}},, where
each instance q; is represented as a tf-idf vector and M is the
number of query instances. We let R = {r;}*, denote the
corresponding set of ranking lists, where each ranking list r;
is obtained by performing pairwise dot product-based image
matching between the query q; and the database images. The
goal of our object retrieval method is to design an effective and
efficient ranking function for capturing the underlying affinity
relationships between Q and the database images (such that
relevant images are highly ranked while irrelevant images are
lowly ranked). When M = 1, our group query method de-
generates to a single query method similar to the DQE method
in [10], but with an additional boosting step as described in
Section I1.B.2. More details of our object retrieval method can
be found in Fig. 1 and Algorithm 1.

Algorithm 1 Ranking function learning using
Adaboost-LinearSVM

1: Input: Training samples 7 = {(x;, y;)} £ |, maximum
number of boosting iteration 7.

2: Output: Ranking function F(x).

3: Initialize: Data distribution: D, (4) = (1)/(K), Vi
and ¢ « 1.

4: whilet < T do

5:  Weighted random sampling positive and negative
data from 7 with distribution D;.

6:  Train a linear SVM f:(x) on the training set.

7:  Calculate the training error: €; = Zf(:l Dy(i)I(y; #
f+(x;)), where [ is the indicator function.

8: Calculate the weight: vy = (1)/(2) In((1 — €))/(e1).

9:  Update the distribution D;q1() =
(Du(i) exp(— s o(x:)))/( Z2), where Z, is a
normalization factor.

10: ¢ «— ¢+ 1.

11: end while

12: Return: Ranking function F'(z) = 23:1 oy - fi(x).

B. Discriminative Ranking Function for Group Query

1) Training Sample Selection: Initially, we obtain training
data samples 7 = {(x;, i)}, where x; is the tf-idf vector
and y; € {1,—1} inidcates whether the corresponding image
contains the object. There are many ways to collect these sam-
ples from query instances; we use spatial verification [4], as in
[10]. This proceeds as follows: images (tf-idf vectors) with more
than a minimum number (10) of spatially consistent matches to
any query image are provided as positive examples and images
with the lowest ranked non-zero similarity score are taken as
negative examples.

2) Discriminative Ranking Function With Boosting: Using
the training data samples 7 = {(x;, y;)} % |, we learn a ranking
function that aims to capture non-linear discriminative infor-
mation from the training data samples. Linear SVM classifiers
are adopted as weak learners in a boosting framework due to
their simplicity and efficiency. Using ensemble learning, these
linear SVM classifiers can be adaptively combined to generate
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Fig.2. Top-6retrieved results of using the linear SVM ranking function and our
boosting-like ranking function with respect to the object landmark Magdalen.
The highlighted images correspond to false positive samples.

a strong classifier. In each boosting iteration, a linear SVM
classifier is learned over a subset of 7, which is obtained by
weighted random sampling over 7. Instead of simple linear
SVM ranking functions used in [10], our boosting-like ranking
function effectively captures nonlinear discriminative infor-
mation by constructing a nonlinear decision boundary using
an additive linear approximation. To cope with the nonlinear
classification problem, non-linear kernel SVM is an alternative,
but prediction is usually computationally expensive, making it
impractical for scalable object retrieval. Therefore, our ranking
function is more suitable because it can not only improve the
retrieval effectiveness but does so with low computational
complexity as [10]. Algorithm 1 provides the details of con-
structing our ranking function. Moreover, as most computation
of Algorithm 1 is spent on training linear SVMs, its running
time can be reduced by parallelising SVM training before
boosting iteration. We do this by collecting a weak classifiers
pool (linear SVM) before boosting from random positive and
negative samples from 7. After that, an approximate ranking
function F'(:) is formed to fit the data by selecting from these
weak classifiers during each boosting iteration. In effect, steps
5 and 6 in Algorithm 1 are executed in parallel before the
boosting iteration begins.

As shown in Fig. 1, a group query with respect to some clear
object landmarks can help to overcome the limitation of indi-
vidual query. For example, Al souls and Radcliffe camera from
the Oxford dataset have average precision (AP) scores 0.96 and
0.97, respectively. The boosting-like ranking function attains
slightly higher results, with AP scores being 0.98 and 0.97 on
the same clear landmarks. However, the retrieval performance
with the linear SVM ranking function degrades greatly in the
cases of lower quality object landmarks, e.g., Magdalen and
Keble with the AP score being 0.288 and 0.692, respectively. In
contrast, using boosting enables the retrieval accuracy (mAP)
to reach 0.407 and 0.870 on Magdalen and Keble. For an intu-
itive understanding, Fig. 2 shows the top ranked results of using
two different ranking functions with respect to Magdalen. As is
seen in Fig. 2, the top ranked results of our boosting-like ranking
function is better than those of the linear SVM ranking function
(containing a few false positive samples).

III. EXPERIMENTS

A. Experimental Setup

Dataset Description: The retrieval experiments are con-
ducted on three public object retrieval datasets: two small-scale
datasets (Oxford 5 K and Paris 6 K [12]) and a large-scale
dataset Oxford 105 K (consisting of Oxford 5 K images and
100 K images from MIRFLICKR-1M [13]. Both of the Oxford
and Paris datasets [12] contain 11 building landmarks for
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Fig. 3. Precision-recall curves of individual query v.s. group query. We obtain
higher retrieval accuracy of group query compared to the individual queries.
Best viewed in color. More examples can be found in the supplemental file.
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Fig. 4. Retrieval performance with different numbers of query instances. In
this experiments, we use high quality query instances.

evaluation, with four kinds of visual condition: “good” (clear
image of the object), “ok” (more than 25% of the object is clear
visible), “junk” (less than 25% of the object is clear visible)
or “bad” (the object is not present). Each image within these
datasets is represented as a histogram of SIFT words after tf-idf
weighting. The SIFT words are obtained by quantizing the
SIFT feature descriptors using approximate k-means [4], [14].

Implementation Details: In each boosting iteration, we ran-
domly select (up to) 50 and 200 tf-idf vectors as positive and
negative examples, respectively. The linear SVM classifier is
trained using the LIBSVM tool [15] with C' = 1 as in [10]. The
maximum iteration number 7 in boosting learning is set to 20.
We implement our method with Matlab on a 2.20 GHz double
core machine with 2 GB memory.

Group query instances are provided online. These can be any
images of a particular object. In our experiments, we utilize
annotated image collections to organize query instances Q
which are varied but contain the same object landmark. The
query instances are organized as follows: 1) We randomly select
the same number of images from “good” and “ok” collection
as high quality query to evaluate the effect of group query
(Tables I-IV and Fig. 4). i4) Similarly, images from “good”,
“ok” and “junk” are treated as low quality query to evaluate
the discriminative ranking function (Table II). 74i) To compare
with state-of-the-art, we use the 55 queries with bounding
boxes defined in [12] (Table V). We adopt the widely used
mean average precision (mAP) [4] to evaluate the retrieval
performance.

B. Experimental Results

Effect of Using Group Query: Table I compares the mAP
score obtained for each landmark in the Oxford data set, using
individual query images (M = 1) and groups of 4 query images
(M = 4). The individual query results are obtained by run-
ning each of the 4 queries in the group separately, and storing
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TABLE 1
COMPARISON OF (MAXIMUM) INDIVIDUAL AND GROUP QUERY RETRIEVAL
PERFORMANCE ON THE OXFORD 5 K DATASET

[ Landmark | M =4[ M =17 Landmarkk | M =4[ M =1 ]

all souls 0.980 0.746 hertford 0.895 0.801
ashmolean 0.805 0.418 keble 0.870 0.844
balliol 0.867 0.200 magdalen 0.407 0.439
bodleian 0.799 0.774 pitt river 0.852 0.974
chr. church 0.864 0.762 rad. camera 0.965 0.326
cornmarket 0.711 0.657
TABLE II

RETRIEVAL PERFORMANCE WITH DIFFERENT DISCRIMINATIVE RANKING
FUNCTIONS: R1: GROUP QUERY WITH LINEAR SVM [10], R2: GROUP QUERY
WITH BOOSTING. .S DENOTES USE OF SPATIAL VERIFICATION. Af DENOTES
THE MAXIMUM NUMBER OF QUERIES IN Q. BOTH HIGH AND (LOW) QUALITY
QUERIES ARE TESTED, AS INDICATED IN THE TABLE

| [ Method | S M [ Oxford 5K [ Paris 6K |
A R1 v 2 0.789 0.772
high R2 Vv 2 0.813 0.780
B R1 v 4 0.809 0.857
high R2 4 4 0.834 0.871
C R1 v 10 0.833 0.864
high R2 \/ 10 0.846 0.875
D R1 VA 2 0.668 0.701
low R2 Vv 2 0.676 0.714
E R1 VA 4 0.755 0.682
low R2 Vv 4 0.783 0.722
F R1 v 10 0.756 0.791
low R2 v 10 0.791 0.824

the maximum result. The query groups are sampled using the
“High quality” strategy. Results are averaged over 11 groups. It
is clear from Table I that the group query improves retrieval per-
formance for 9 out of 11 queries, and by an average of 29.9%.
Note that our method fails in the cases of (Magdalen, Pitt river)
due to a lack of quality query images. Fig. 3 illustrates that the
group query can result in significantly higher precision-recall
performance than any individual query, using the object land-
mark (all souls).

Evaluation of Query Instance Number M : Fig. 4 investigates
the effect of varying the numbers of query instances. As is seen
in Fig. 4, the average retrieval accuracy rises when M increases.
As M increases, the computational cost increases linearly, due
to the repetition of the dot-product ranking and spatial verifica-
tion for each query instance. In order to balance effectiveness
and efficiency, M is set to 4 in the experiments below.

Investigation of Using Linear SVM v.s. Adaboost-Lin-
earSVM: Table II compares the retrieval performance using
two types of classifiers used in the discriminative ranking
function: the linear SVM (referred to as R1) and the Ad-
aBoost-LinearSVM (referred to as R2). As is seen in Table II,
the discriminative ranking function with AdaBoost-LinearSVM
always performs better than linear SVM. The superiority of
the boosting-like ranking function is more evident in the low
quality query. For example, in Group E the retrieval per-
formance using boosting-like ranking function (R2) is 3.7%
(5.9%) higher on the Oxford (Paris) datasets than the results
using linear SVM ranking function (R1). Moreover, Table III
illustrates the re-ranking CPU time of different discriminative
ranking functions. From Table III, we see that our method
achieves the best retrieval accuracy with high searching effi-
ciency in the post-processing. By parallelising SVM training
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TABLE III
AVERAGE RE-RANKING CPU TIME FOR DIFFERENT CLASSIFIERS USED IN
THE DISCRIMINATIVE RANKING FUNCTION. THE GROUP QUERY (M = 4)
IS CONDUCTED ON THE OXFORD 5 K DATASET

| Method | mAP | re-ranking CPU time (s) |
linear SVM 0.809 0.37
Adaboost-linearSVM 0.834 1.12
RBF-kernel SVM 0.815 12.26
Adaboost-linearSVM (parallelised) | 0.830 0.49
TABLE 1V

COMPARISON WITH QUERY EXPANSION METHOD, APPLIED TO
BOTH INDIVIDUAL AND GROUP QUERIES

| Method [ S M [ Oxford 5K | Paris 6K |
tf-idf + dot product (maximum) 4 0.631 0.605
AQE (maximum) v 4 0.742 0.657
AQE (positive examples) v 4 0.743 0.809
Our method N 0.834 0.871
TABLE V

RETRIEVAL PERFORMANCE COMPARISON WITH RECENT METHODS, BASED
ON 55 QUERIES DEFINED IN [12]. BASELINE [4], SPATIAL VERIFICATION [4],
ToTAL RECALL [5] (AQE), AND DISCRIMINATIVE TOTAL RECALL (DQE)
[10] ARE OUR IMPLEMENTATION, OTHERS ARE CITED RESULTS

| Method | Oxford 5K | Paris 6K | Oxford 105K |
Baseline [4] 0.612 0.639 0.515
Spatial verification [4] 0.645 0.655 0.571
Local geometry [6] 0.788 0.634 0.725
AQE [5] 0.800 0.769 0.767
Total recall II [7] 0.827 0.805 0.767
Hello neighbors [16] 0.814 0.803 0.767
DQE [10] 0.798 0.783 0.809
DQE-+Boosting 0.823 0.782 0.818
DQE+Boosting (group) 0.896 0.856 0.890

(Section I11.B.2), we reduce the re-ranking time at a slight cost
to mAP.

Comparison With Query Expansion: Similar to our method,
average query expansion (AQE) [5] also applies spatial verifi-
cation to top ranked retrieval results and collect a number of
true positives. However, it uses query averaging of the visual
words collected in the positive images, while our method trains
a discriminative ranking function with the same positive images
and additional negative images. Table IV compares our group
query method with average query expansion (AQE) [5] in the
following aspects: ¢) the best (maximum mAP socre) of AQE
for each individual query. #¢) AQE on all positive examples col-
lected by the group query. As is seen in Table IV, our group
query method can outperform AQE in different experimental
configurations.

Comparison With State-of-the-Art Methods: We compare our
method with several state-of-the-art methods (listed in Table V)
that focus on query model refinement with post-processing!. In
Table V, spatial verification [4] and local geometry [6] use pair-
wise spatial consistency to promote true positives; AQE [5],
[7] and DQE [10] aim to improve the query model; and [16]

Note that DQE is our implementation, which is slightly but consistently
lower than the results reported in [10] for both DQE and baseline results.
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uses a pre-defined graph to find similar images to query. The
instances Q used for group query in Table V are the 5 ground
truth files defined in [12] for each landmark. From Table V, we
see that our method can outperform state-of-the-art methods. In
particular, when only a single query instance is available, our
method (DQE+DBoosting) can outperform DQE [10] (using
linear SVM ranking function instead). In cases where multiple
query instances are available, boosting group retrieval with a
small number of query instances can significantly improve the
retrieval results.

IV. CONCLUSION

In this letter, we have introduced the notion of a group query,
and shown its effectiveness for object retrieval. We proposed
a boosted discriminative ranking function to refine the group
query model. The proposed ranking function captures non-
linear discriminative information on the retrieved data samples
effectively and efficiently. Experimental results show that
our method can achieve higher performance than competing
methods.
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